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SYNOPSIS 

Using complete phase space distributions, this analysis predicts an isotropic kinetic con- 
tribution to the total stress for both the solvent and polymer. The solvent’s contribution 
depends on the polymer’s intramolecular potential energy, as well as the intermolecular 
potential between the solvent and polymer. The analysis questions whether single molecule 
distributions are capable of investigating the possibility of anisotropic kinetic distributions. 
The analysis uses the peculiar velocity fields in lieu of modeling molecular collisions. 

INTRODUCTION 

In kinetic theory analyses of polymer solutions the 
information regarding the velocity space distribution 
is usually lost by averaging the phase space distri- 
bution over the velocity space to form the configu- 
ration space distribution function. Losing this in- 
formation requires assuming that the velocities of 
the beads forming the polymer chain are distributed 
over all possible values according to the Maxwellian 
velocity distribution. This is the so-called equilibra- 
tion in momentum space assumption. 

This assumption is necessary only if we fail to 
retain the information regarding the velocity space 
distribution by choosing to work with a configuration 
space analysis. In our previous study,’ we chose to 
work solely with the configuration space because 
doing so simplified the analysis considerably. In this 
article we retain the information regarding the ve- 
locity space and work directly with the phase space 
distributions to compute the kinetic contribution to 
the total stress in flows of polymer solutions. 

The information provided by the velocity space 
distribution is needed to compute the kinetic con- 
tribution because it is defined by the ensemble av- 
erage over the velocity dyadic product. Using the 
Maxwellian velocity distribution, only isotropic 
contributions are predicted. These are the predic- 
tions for the equilibrium state of the fluid. To eval- 
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uate the possibility of anisotropic kinetic contri- 
butions requires retaining the information about the 
nonequilibrium behavior of the velocity space dis- 
tribution. 

For describing the rheological behavior of con- 
centrated polymer solutions and polymer melts, 
nonequilibrium velocity space distributions appear 
necessary. The concept of reptation,2 used for de- 
scribing this behavior, requires a nonequilibrium 
velocity space distribution. Many different kinetic 
theories considered the possibility of anisotropic ki- 
netic contributions arising from various proposed 
nonequilibrium velocity space distributions. What 
they have in common is that they use a single mol- 
ecule distribution function to describe the behavior 
of one macromolecule. 

Using single molecule distributions, the reptation 
models 394 and the encapsulated dumbbell  model^^.^ 
account for the macromolecule’s restricted move- 
ment by assigning a preferred directionality to space. 
This is a useful procedure that enables one to ac- 
count for physical bonding among macromolecules. 
As far as the kinetic contribution is concerned, 
however, it seems to overlook that, no matter how 
restricted the movements of any one particular 
macromolecule, the net motion of all molecules 
should be isotropic because space is isotropic. This 
is a fundamental difficulty we face when we use sin- 
gle molecule distributions. 

The enormous complications that arise when us- 
ing many molecule, or even pair, distribution func- 
tions preclude their usefulness for modeling the 
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rheological behavior of polymer solutions and melts. 
Although using them may be the only way to ac- 
curately assess whether anisotropic kinetic contri- 
butions are fact or fiction, we should be able to in- 
vestigate the assumptions needed to create aniso- 
tropic kinetic contributions using single molecule 
distributions. 

As stated in our previous study, our approach is 
to model a polymer solution using two conditional 
single molecule probability distributions. We sug- 
gested that this approach may be useful for describ- 
ing concentrated polymer  solution^.^ The basis for 
this suggestion was that the intramolecular contri- 
bution from the polymer to the total stress should 
dominate any intermolecular contributions. Inter- 
molecular contributions require using pair distri- 
bution functions for their development and cannot 
be predicted using single molecule distributions no 
matter how many are used. Since we suggest using 
our approach for evaluating concentrated polymer 
solutions and also polymer melts, which should cor- 
respond to our so-called theta condition,’ we now 
evaluate the kinetic contribution without using the 
Maxwellian velocity distribution. 

Working directly with the phase space distribu- 
tions in our approach poses few new mathematical 
difficulties, but a conceptual difficulty of significant 
proportions. Our approach transforms the myriad 
of unknown molecular peregrinations and encoun- 
ters into an unknown vector field the peculiar ve- 
locity. In the kinetic theory of gases, scientists mod- 
eled each molecular encounter as an individual 
event, requiring restrictive assumptions regarding 
the feasibility of an encounter. These assumptions, 
such as Boltzmann’s molecular disorder assump- 
tion,’ were not only necessary from a calculational 
viewpoint but were vital for visualizing the molecular 
interactions. Our approach ignores each molecular 
encounter as an individual event, but rather views 
all molecular interactions as developing the peculiar 
velocity fields. Thus, our approach spares us from 
having to model a molecular collision. However, we 
have not overcome this ignorance but have only 
postponed having to satisfy it. 

To identify the peculiar velocity fields we assume 
that they are irrotational. This assumption can be 
compared to Boltzmann’s molecular disorder as- 
sumption,8 which is equivalent to assuming that the 
peculiar velocity fields are isotropic and homoge- 
neous. We place no other restrictions on the fields. 
Although we believe that physical considerations 
warrant assuming that a peculiar velocity is also a 
solenoidal field, we do not because doing so precludes 
using linear molecular forces. Certainly the actual 

molecular forces are nonlinear, but the ease of cal- 
culation that using linear forces affords us prevents 
our precluding their use. 

DEVELOPMENT 

The Peculiar Velocity Fields 

To identify the peculiar velocity fields we consider 
the Lagrangian function for our system. Our system 
consists of one point mass solvent molecule and one 
macromolecule, modeled by a linear bead-spring as- 
sembly containing a beads. The Lagrangian function 
is defined as the excess of the kinetic energy, K, 
over the potential energy, U ,  

L = K - U  (1) 

We consider the macroscopic manifestation of the 
Lagrangian function. The macroscopic counterpart 
is found by averaging the ensemble of microscopic 
systems over the joint solvent-polymer phase space, 

\\((L))\\ = \\((K))\\ - \\((U))\\ ( 2 )  

The double pair of angle brackets and backward 
slashes, without subscripts, denotes the joint phase 
space average. We use it in its normalized form such 

The polymer solution flows with a bulk velocity 
u = u ( r )  , where pis the macroscopic position field. 
The macroscopic kinetic energy of the polymer so- 
lution consists wholly of this visible motion. Let m, 
denote the mass of the solvent molecule and let mp 
denote the mass of a bead; then the macroscopic 
kinetic energy of the system is 

that \\((l))\\ = 1. 

The macroscopic counterpart to the microscopic 
potential energy can result only from an external 
potential. That is, no intrasystem potential energy 
will result in a macroscopic potential energy. Let Em 
signify the macroscopic counterpart of the micro- 
scopic external potential energy, E. Note that al- 
though E may exist, Em does not necessarily exist. 
For example, if E is a wall potential, Em does not 
exist. Generally speaking, only long-range external 
forces, such as that due to gravity, will establish Em. 

Putting the macroscopic kinetic and potential 
energies together yields the macroscopic Lagrangian 
as 

\\((L))\\ = i (m,  + Lurn,)u.u - E m  (4) 
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The Lagrangian function for our system in terms of 
the microscopic variables is 

cc 

L = fmsrs-r; ,  + imp r,-r, - r - 'P - E (5)  
,=1 

where r, is the velocity of the solvent molecule and 
r, is the velocity of bead p; r is the intermolecular 
potential between the solvent and all of the beads 
on the polymer chain; 'P is the intramolecular po- 
tential between adjacent beads on the chain. 

We define the peculiar velocity for a particle by 
subtracting the bulk velocity from the particle's ve- 
locity: 

where the bulk velocity is evaluated at the location 
of the particle. We simplify the notation by letting 
u, signify u ( r,) and u, signify u ( r,) . Then, using 
Eqs. ( 6)  in (5)  yields 

a 

L = + m,u,. us + + mp 2 u, * u, + m,v, 
p=l 

a 

-us + mp C v,. u, - E + L' (7 )  
,=1 

where we have let 

a 

L' = fmsvs- v, + fm, 2 v,. v, - r - 'P (8) 
p=l 

Averaging Eq. ( 7)  over the joint solvent-polymer 
phase space yields 

\\((L))\\ = f(m, + amp)u.u 

- Em + \\((L'))\\ (9) 

Subtracting Eq. ( 4 )  from (9)  yields 

The argument of the ensemble average in Eq. (10) 
is the integrand of an integral over an arbitrary 
phase space. To satisfy Eq. (10) we evaluate the 
conditions for which the integrand vanishes. Hence, 
we have 

We assume that the peculiar velocity fields are 
derivable from a gradient of a scalar function, i.e., 
a peculiar velocity is an irrotational field. Let 4 de- 
note this velocity potential, then 

a4 v, = - 
ar, 

a4 v, = - 
ar, 

forp = 1,2 ,3 , .  . . , a (12b) 

Using Eqs. (12) in ( 11 ) yields our governing equa- 
tion for the peculiar velocity potential: 

This equation is an a + 1-dimensional, nonlinear, 
first-order, partial differential equation for 4. Since 
there are no systematic procedures for solving such 
an equation, let us rewrite Eq. ( 13) as if it were a 
linear equation: 

where 

a4 a, = m, - 
ar, 

for p = 1, 2, 3, . . . 

Applying the method of characteristics to this 
pseudo-linear equation tells us 

forp = 1,2,3,  ..., a (15) 

where t is a parameter. Equations (15) are a + 2 
ordinary differential equations that integrate to 

r , = J c i t u , = r , ( t )  ( l e a )  

r, = s dt a, = r,( t )  for p = 1, 2, 3, . . . , a (16b) 

Differentiating Eq. (16c) with respect to r, and 
r, yields 
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2 a[ J d t ( r  + @)I 
ad 

forp = 1,2,3,  ..., a (1%) 

We rewrite these as 

for p = 1,2 ,3 , .  . . , a (18b) 

These reduce to 

( r  + @) for p = 1,2 ,3 , .  . . , a (19b) 
a4 2 a t  
dr,, dr,, 
-= -  

To evaluate the partial derivatives at/ar,  and at/ 
ar,, , p = 1,2, 3, . . . , a, we add the a + 1 equations 
[16( a )  and (b) ]  . Inverting the equation formed by 
the sum of these equations yields the function 

From this it is easy to show that 

at 

dr,, ar,, 
- ( a + 1 ) -  f o r p = 1 , 2 , 3  ,..., a (21b) dt  -- 

Using Eqs. (15) and (21) in (19) yields 

Now substituting the definitions for a, and a,, yields 

 ad^ 2 ( r + @ )  1/2 
u s = - = [ (  dr, a + l ) m s  ] ( 23a) 

forp = 1,2 ,3 , .  ..,a (23b) 

Direct substitution of Eqs. (23) into ( 13) shows that 
they satisfy it. 

Integrating Eqs. (22) yields the implicit relations 

where C, and C, are constants of the integrations. 
Evaluating the gradients of Eqs. (24) yields 

for p = 1 , 2 , 3 , .  . . , a  (25b) 

where 6 is the unit tensor. Equations (23) and (25) 
tell us all that we need to know about the peculiar 
velocity fields. 

The Solvent’s Kinetic Contribution 
Having modeled the solvent with a single point mass, 
its properties are akin to those of an ideal gas. As 
stated in our previous study,’ we do not use ideal 
gas properties for the solvent but rather substitute 
the appropriate liquid viscosity and density. The is- 
sue of evaluating the solvent’s kinetic contribution 
would be moot if not for the fact that the presence 
of the polymer molecule perturbs the motion of the 
solvent molecule. Because of this, and the possibility 
that it may create an anisotropic kinetic contribu- 
tion, we evaluate the solvent’s contribution for Auid 
flow. 

We define the solvent’s contribution as 
n 

o(,) = m, J d3r,  
V 
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where V is the domain of the configuration space 
for a single particle and is that for the velocity 
space. The delta function allows for a spatial vari- 
ation of the stress. The pair of angle brackets nested 
in the pair of backward slashes with the subscript 
p indicates that its argument, the solvent's phase 
space distribution function f s ,  is averaged over the 
polymer phase space. We rewrite Eq. (26)  in more 
compact form as 

To establish the governing equation for u ('), we 
use the theorem of Liouville. It tells us that f s  is 
conserved by 

a a f s  - -a  
at ars a r S  

fsrs - - -  f s s  r ( 2 8 )  - - -. 

where rs represents the acceleration of the solvent 
molecule. Lagrangian mechanics yields the force 
balance 

-a(r + E )  
a r S  

msrs = 

where rs is reference frame indifferent. r and E are 
conservative. Combining this force balance with the 
continuity equation for f s ,  and assuming that the 
bulk flow is incompressible, yields 

where we have used the definition of the substantial 
derivative and the peculiar velocity. 

Multiplying Eq. ( 30) by 6 ( rs - r )  msusus f p  and 
averaging over the joint solvent-polymer phase 
space yields 

+ Jvd3rs  d3us 6(rs - r)usus 

We evaluate the three terms on the right-hand side 
(RHS) of (31) separately. 

Applying chain rule differentiation to the inte- 
grand of the first term yields 

Doing the same to the second term shows that it 
vanishes because we have assumed that J? and E are 
conservative. 

Applying chain rule differentiation twice to the 
integrand of the third term yields 

Note that 

because ensemble averages over odd powers of the 
peculiar velocity are zero. Hence, the third term on 
the RHS of (31) reduces to 

-\( ( usus a2(r drs  ars + y\ (S)l (35)  
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Combining all terms yields our constitutive 
equation for u ('): 

We simplify by neglecting all concentration gra- 
dients. Therefore, E = 0 on V. For linear forces, we 
let 

-- - I  a2r 
d r ,  d r ,  (37) 

where I is some arbitrary (constant) second-order 
tensor. These two assumptions reduce Eq. (36) to 

T*'progress further, we must know the peculiar ve- 
locity field. 

Assuming that a peculiar velocity is an irrota- 
tional field, the RHS of Eq. (38) becomes 

Using this in Eq. (38) transforms the constitutive 
equation for u (') to 

Du") 1 du -l 2 312 + - I : (%) u (,) = 1 (-) Dt m, 3 a + l  

This contribution to the total stress is isotropic 
and, therefore, irrelevant. However, it shows clearly 
how the polymer perturbs the solvent and how this 
perturbation manifests itself in macroscopic terms. 
It is interesting to see that the polymer's intramo- 
lecular potential 3, as well as the intermolecular 

potential r, affects the solvent's contribution to the 
total stress. 

The Polymer's Kinetic Contribution 

The analysis for the polymer's kinetic contribution 
is nearly identical to that for the solvent. The only 
difference is that we account for the motion of each 
of the (Y beads. We define the polymer's kinetic con- 
tribution as 

= mp fi Jv d3r ,  d3v ,  
,=l 

where the pair of angle brackets nested within the 
backward slashes carrying the subscript s denotes 
the ensemble average over the solvent phase space. 
Writing Eq. (41 ) in compact notation yields 

Proceeding in the same manner as for the solvent, 
we use the theorem of Liouville to define the con- 
tinuity equation for the polymer's phase space dis- 
tribution function, f,, 

where r7 is the acceleration of bead 7.  A force balance 
on bead 7 yields 

because all of the molecular potentials are conser- 
vative. Combining the force balance on bead 7 with 
the continuity equation for f,, and assuming that 
the bulk flow is incompressible, yields 

where we have used the definition for the substantial 
derivative and the peculiar velocity. 
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Multiplying.Eq. (45) by 6(re - r)mpvevsfs  and v,v,\( a f ,  d ( r  + 9 + E )  
ar, ar, averaging over the joint solvent-polymer phase 

space yields 
a ( v e v e f p  a(r + 9 + E ) / d r , )  

-- Duek' =\( k 
- -mp fi Jv d3r,, s, d3u,  6(rs - r)vevs 

u=l Dt 

+ fi Jvd3rp s, d3vp  6 ( r a  - r ) w ,  i: Averaging (49) over the polymer phase space shows 
that the third term on the RHS of (46) reduces to p = l  7=l 

+ n J d3rp  J d3vp 6(rs - r)vsv, 
u=l v 

Combining the expressions for all of the terms of 
(46) transforms it to 

We consider each term separately. 

is nearly the same as for the solvent. From the in- 
tegrand of the first term we have 

Handling for the first term on the RHS of (46) p = l  ($r (51)  

This is our constitutive equation for the polymer's 
kinetic contribution from bead 0,  8 = 1,2, 3, . . . , a. 

In the absence of all concentration gradients, we 
set E = 0 on V. For linear forces we use (37) and 
let 

(47) 

(52)  

where H is an arbitrary (constant) second-order 
tensor. Using these assumptions in (51 ) transforms 
it to 

Taking the ensemble average of (47) over the poly- -- '" - H 
mer phase space shows that the first term on the 
RHS of (47) vanishes because f, vanishes at the 
boundary of V. Hence, the first term on the RHS 
of (46) reduces to 

drpd r,, 

Daik' CY 

Dt mp 
+-(I+ H )  : ,=l 

The second term on the RHS of (46) vanishes 

the solvent does, i.e., because r, 9, and E are not 
functions of the peculiar velocity. 

From the third term on the RHS of ( 46 ) we have 

= m, i\( ( v u - F ) p i  (53) 

To evaluate Eq. (53)  further requires knowledge of 
the peculiar velocity fields. 

for the same reason that its corresponding term for p=1 
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Assuming that a peculiar velocity is an irrota- 
tional field transforms Eq. (53) to 

Dujk’ + - ( ( I + W ) :  a ( !!!)-lUjk) 
Dt mp 

Just as it was for the solvent, this kinetic contri- 
bution is isotropic. The contribution from bead 8 is 
affected by the position of the solvent molecule as 
well as that for all of the other beads. In addition to 
this, the kinetic contribution from bead 8 is affected 
by the magnitude of the forces acting on all of the 
other beads. Unlike the corresponding intramolec- 
ular contribution evaluated in our previous study, 
it is not viscoplastic. 

We need greater insight into the nature of the 
peculiar velocity field to rule out the possibility for 
predicting anisotropic kinetic contributions using 
this approach. That insight may require greater la- 
bor than the system merits, The fundamental dif- 
ficulty is that our system consists solely of one sol- 
vent molecule and one macromolecule. While it may 
be too difficult to use a microscopic system consisting 
of two macromolecules described by a pair distri- 
bution function, it may prove worthwhile to describe 
such a system using two conditional single molecule 
probability distributions. Such an approach is ham- 
pered by the inability to predict intermolecular con- 
tributions to the total stress, but these should be 
negligible compared to the intramolecular contri- 
butions. Although this approach would not be de- 
cisive in testing the hypothesis of whether aniso- 
tropic kinetic contributions are fact or fiction, it may 
prove convincing. 
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